ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration dormakaba International Holding GmbH
Publisher Institut Bauen und Umwelt e.V. (IBU)

Declaration number EPD-DOR-20250370-CBA1-EN

Issue date 16/07/2025 Valid to 15/07/2030

Slide Channel System for Double Leaf Doors dormakaba

www.ibu-epd.com | https://epd-online.com

General Information

dormakaba Slide Channel System for Double Leaf Doors Programme holder Owner of the declaration dormakaba International Holding GmbH IBU - Institut Bauen und Umwelt e.V. DORMA Platz 1 Hegelplatz 1 10117 Berlin 58256 Ennepetal Germany Germany **Declaration number** Declared product / declared unit EPD-DOR-20250370-CBA1-EN 1 piece of the product: Slide Channel System for Double Leaf Doors, consisting of the following items: • 2 Slide channels · Integrated door coordinator · Electro-mechanical hold open device · Integrated smoke detector · Product packaging This declaration is based on the product category rules: Scope: Building Hardware products, 01/08/2021 This Environmental Product Declaration refers to a Slide Channel System (PCR checked and approved by the SVR) for Double Leaf Doors manufactured by dormakaba. The production site is located in Ennepetal (Germany). Issue date This declaration covers multiple product variants of dormakaba's Slide Channel System for Double Leaf Doors, including GSR-EMF (XEA) / GSR-16/07/2025 EMR 2/V (XEA) / GSR (XEA) and GSR-EMF 2 (XEA). The declared results are based on the GSR-EMR 2/V (XEA), which represents the worst-case scenario. Valid to 15/07/2030 Green electricity with Guarantee of Origin (GoO) is being used at this production site. The data represents the year 2024. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences. The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as EN 15804. Verification Dipl.-Ing. Hans Peters The standard EN 15804 serves as the core PCR (Chairman of Institut Bauen und Umwelt e.V.) Independent verification of the declaration and data according to ISO 14025:2011 X internally externally Dr.-Ing. Wolfram Trinius (Managing Director Institut Bauen und Umwelt e.V.) (Independent verifier)

Product

Product description/Product definition

This EPD is representative for multiple Slide Channel models for Double Leaf Doors which use a guided mechanism to support smooth and controlled door closing. Integrated door coordinators ensure the doors close in the correct sequence, also a critical function for fire and smoke protection.

GSR-EMR 2/V (XEA)

Application consisting of an electromechanical hold open unit (EMF) with integrated smoke detector (smoke detection panel) (RMZ).

GSR-EMF (XEA)

Solution with electromechanical hold open unit (EMF).

GSR (XEA)

Standard version for double leaf doors with door coordinator.

GSR-EMF 2 (XEA)

A door coordinator and an electromechanical hold open unit.

For the use and application of the Slide Channel System for Double Leaf Doors, the respective national provisions at the place of use apply. The standards which can be applied are the following:

- EN 1154
- EN 1155
- EN 1158
- DIN SPEC 1104
- EN 14637
- 2011/65/EU (RoHS)

The CE marking takes into account the proof of conformity with the respective harmonized standards based on the legal provisions above.

Application

The Slide Channel System for Double Leaf Doors can be used for interior and exterior applications. It is applicable for double leaf doors, as well as fire and smoke doors. Examples of use are

- Interior doors,
- · Public buildings and
- · Office buildings.

Technical Data

The Slide Channel GSR-EMF (XEA), GSR-EMR 2/V (XEA), GSR (XEA), GSR-EMF 2 (XEA) have the following technical

properties:

Name	Value	Unit
Connection voltage	230 ± 10% / 15%	V AC
Operating voltage	24	V DC
Release torque	25 - 65	Nm at 90° opening angle
Door opening angle max	130	۰

Performance data of the product with respect to its characteristics in accordance with the relevant technical provision which can be applied are mentioned above.

Base materials/Ancillary materials

The major material composition including the packaging of the product is listed below:

Name	Value	Unit
Aluminium	30	%
Steel	23	%
Packaging	21	%
Zinc	11	%
Plastics	6	%
Stainless Steel	6	%
Electronics	2	%
Others	1	%

The product includes partial articles which contain substances listed in the *Candidate List of REACH Regulation* 1907/2006/EC (date: 25.01.2025) exceeding 0.1 percentage by mass: yes

 Lead (Pb): 7439-92-1 (CAS-No.) is included in some of the alloys used. The concentration of lead in each individual alloy does not exceed 0.3% (by mass).

The *Candidate List* can be found on the *ECHA* website address: https:echa.europa.eu/de/home.

Reference service life

The reference service life of the Slide Channel System for Double Leaf Doors is about 20 years, depending on the application and frequency of use. For repairs and renewals, suitable spare parts are available. The slide channel system is tested and certified to *EN 1158*, meaning they are designed to withstand a minimum of 500,000 cycles.

LCA: Calculation rules

Declared Unit

The declared unit is 1 piece of the product: Slide Channel System for Double Leaf Doors including packaging:

Name	Value	Unit
Declared unit	1	piece/product
Mass of declared Product without Packaging	3.3	kg
Mass of Packaging	0.88	kg
Total mass of declared product	4.18	kg

System boundary

The type of EPD is: cradle to gate with options, modules C1–C4, and module D (A1–A3 + C + D and additional modules: A4+A5)

Production - Module A1-A3

The product stage includes: — A1, raw material extraction, processing and mechanical treatments, processing of secondary material input (e.g. recycling processes), — A2, transport to the manufacturer, — A3, manufacturing and assembly including provision of all materials, products and green electricity with Guarantee of Origin (GoO), as well as waste processing up to the end-of-waste state.

Construction stage - Modules A4-A5

The construction process stage includes:

— A4, transport to the building site; — A5, installation into the building; including provision of all materials, products and energy, as well as waste processing up to the end-of-waste state or disposal of final residues during the construction process stage.

Use stage - Module B6

The use stage related to the operation of the building includes:

— B6, operational energy use

End-of-life stage- Modules C1-C4 and D

The end-of-life stage includes: — C1, de-construction, demolition: — C2, transport to waste processing; — C3, waste processing for reuse, recovery and/or recycling; — C4, disposal; including provision and all transport, provision of all

materials, products and related energy and water use. Module D (Benefits and loads beyond the system boundary) includes:

— D, recycling potentials, expressed as net impacts and benefits

Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Global

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. Background database: GaBi, SP40.

LCA: Scenarios and additional technical information

Characteristic product properties of biogenic carbon

Name	Value	Unit
Biogenic carbon content in product	-	kg C
Biogenic carbon content in accompanying packaging	0.32	kg C

Ennepetal (Germany) is considered for A3.

Note: 1 kg of biogenic carbon is equivalent to 44/12 kg of CO₂.

Transport to the building site (A4)

Name	Value	Unit
Litres of fuel	0.00276	l/100km
Transport distance (for scaling)	100	km
Capacity utilisation (including empty runs)	55	%

The product is transported via truck. The product is stored in the dormakaba logistic center in Wuppertal. The main distribution region is EU. In order to allow scaling to a specific point of installation 100 km are declared.

Installation into the building (A5)

Name	Value	Unit
Waste packaging (paper)	0.88	kg
Waste packaging (plastic)	0	kg

Reference service life

Name	Value	Unit
Life Span according to the manufacturer	20	а

Operational energy use (B6)

Name	Value	Unit
Electricity consumption for 1 year	19.71	kWh
Days per year in use	365	days
On mode per day	24	h
On mode power	2.25	W

End of life (C1-C4)

The product dismantling from the building is done manually without environmental burden.

Transport to waste management is 50 km.

Name	Value	Unit
Collected separately waste type	3.3	kg
Recycling	3	kg
Energy recovery	0.26	kg
Landfilling	0.04	kg

The product is disassembled in a recycling process. Material recycling is then assumed for metals and electronics. The plastic components are assumed to be incinerated with energy recovery. The minor proportions of residues arising from the recycling process are landfilled. Region for the End of Life is: Europe.

Reuse, recovery and/or recycling potentials (D), relevant scenario information

Name	Value	Unit
Recycling	100	%

The collection rate is 100 %.

LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

Product stage				_	ruction s stage			L	Jse stag	je			E	End of li	ife stage	e	Benefits and loads beyond the system boundaries
	Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
	A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
	Χ	Х	Х	Х	Х	MND	Х	MNR	MNR	MNR	Х	MND	Х	Х	Х	Х	Х

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 1 piece Slide Channel System for Double Leaf Doors

Parameter	Unit	A1-A3	A4	A5	B2	B6	C1	C2	C3	C4	D
GWP-total	kg CO ₂ eq	1.95E+01	3.66E-02	1.25E+00	0	3.59E+00	0	1.44E-02	7.5E-01	6.26E-04	-1.11E+01
GWP-fossil	kg CO ₂ eq	2.08E+01	3.5E-02	3.12E-02	0	3.57E+00	0	1.38E-02	7.5E-01	6.22E-04	-1.11E+01
GWP- biogenic	kg CO ₂ eq	-1.36E+00	1.62E-03	1.22E+00	0	1.19E-02	0	6.38E-04	1.75E-05	2.13E-06	-2.45E-02
GWP-luluc	kg CO ₂ eq	1.85E-02	8.32E-07	2.05E-05	0	5.17E-03	0	3.28E-07	4.24E-05	1.79E-06	-4.83E-03
ODP	kg CFC11 eq	4.32E-10	3.69E-18	2.25E-16	0	7.85E-14	0	1.46E-18	3.78E-16	2.31E-18	-6.22E-11
AP	mol H+ eq	9.61E-02	3.5E-05	3.49E-04	0	7.88E-03	0	1.38E-05	1.33E-04	4.46E-06	-4.42E-02
EP- freshwater	kg P eq	6.57E-05	7.48E-09	4.39E-08	0	9.54E-06	0	2.95E-09	6.03E-08	1.07E-09	-1E-05
EP-marine	kg N eq	1.45E-02	1.11E-05	1.26E-04	0	1.75E-03	0	4.4E-06	3.01E-05	1.15E-06	-5.94E-03
EP-terrestrial	mol N eq	1.55E-01	1.24E-04	1.57E-03	0	1.84E-02	0	4.89E-05	6.08E-04	1.26E-05	-6.43E-02
POCP	kg NMVOC eq	4.42E-02	3.15E-05	3.34E-04	0	4.8E-03	0	1.24E-05	8.33E-05	3.48E-06	-1.91E-02
ADPE	kg Sb eq	2.52E-03	1.05E-09	3.55E-09	0	1.03E-06	0	4.14E-10	5.19E-09	5.59E-11	-7.66E-04
ADPF	MJ	2.8E+02	4.96E-01	3.93E-01	0	6.28E+01	0	1.96E-01	3.48E-01	8.16E-03	-1.55E+02
WDP	m ³ world eq deprived	4.29E+00	6.85E-05	1.55E-01	0	7.78E-01	0	2.7E-05	7.67E-02	6.52E-05	-1.2E+00

GWP = Global warming potential; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential of land and water; EP = Eutrophication potential; POCP = Formation potential of tropospheric ozone photochemical oxidants; ADPE = Abiotic depletion potential for non-fossil resources; ADPF = Abiotic depletion potential for fossil resources; WDP = Water (user) deprivation potential)

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 1 piece Slide Channel System for Double Leaf Doors

System for	System for Double Leaf Doors												
Parameter	Unit	A1-A3	A4	A5	B2	В6	C1	C2	C3	C4	D		
PERE	MJ	1.25E+02	1.56E-03	1.06E+01	0	2.78E+01	0	6.17E-04	9.04E-02	1.07E-03	-6.21E+01		
PERM	MJ	1.05E+01	0	-1.05E+01	0	0	0	0	0	0	0		
PERT	MJ	1.35E+02	1.56E-03	7.15E-02	0	2.78E+01	0	6.17E-04	9.04E-02	1.07E-03	-6.21E+01		
PENRE	MJ	2.72E+02	4.96E-01	3.94E-01	0	6.28E+01	0	1.96E-01	8.65E+00	8.16E-03	-1.55E+02		
PENRM	MJ	8.3E+00	0	0	0	0	0	0	-8.3E+00	0	0		
PENRT	MJ	2.8E+02	4.96E-01	3.94E-01	0	6.28E+01	0	1.96E-01	3.48E-01	8.16E-03	-1.55E+02		
SM	kg	1.03E+00	0	0	0	0	0	0	0	0	0		
RSF	MJ	0	0	0	0	0	0	0	0	0	0		
NRSF	MJ	0	0	0	0	0	0	0	0	0	0		
FW	m ³	2.35E-01	2.8E-06	3.64E-03	0	3.22E-02	0	1.11E-06	1.83E-03	2.06E-06	-1.23E-01		

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials; PENRT = Total use of non-renewable primary energy resources; SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Use of net fresh water

RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 1 piece Slide Channel System for Double Leaf Doors

Parameter	Unit	A1-A3	A4	A5	B2	B6	C1	C2	C3	C4	D
HWD	kg	3.85E-06	4.81E-11	5.8E-10	0	2.6E-08	0	1.9E-11	1.32E-09	1.24E-10	-7.15E-07
NHWD	kg	3.68E+00	5.07E-05	3.9E-02	0	4.45E-02	0	2E-05	7.79E-02	4.1E-02	-2.16E+00
RWD	kg	1.46E-02	5.33E-07	2.07E-05	0	9.53E-03	0	2.1E-07	1.29E-05	9.29E-08	-1.44E-02
CRU	kg	0	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	2.97E+00	0	0

MER	kg	0	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	1.89E+00	0	0	0	0	1.42E+00	0	0
EET	MJ	0	0	3.42E+00	0	0	0	0	3.25E+00	0	0

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed; CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electrical energy; EET = Exported thermal energy

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 1 piece Slide Channel System for Double Leaf Doors

Parameter	Unit	A1-A3	A4	A5	B2	B6	C1	C2	C3	C4	D
РМ	Disease incidence	1.05E-06	1.84E-10	1.93E-09	0	6.61E-08	0	7.26E-11	1.7E-09	5.52E-11	-6.87E-07
IR	kBq U235 eq	2.45E+00	7.61E-05	3.2E-03	0	1.56E+00	0	3.01E-05	1.16E-03	9.56E-06	-2.79E+00
ETP-fw	CTUe	1.24E+02	3.51E-01	1.87E-01	0	2.69E+01	0	1.39E-01	1.3E-01	4.66E-03	-6.04E+01
HTP-c	CTUh	3.56E-07	6.61E-12	9.87E-12	0	7.42E-10	0	2.61E-12	1.13E-11	6.91E-13	1.36E-09
HTP-nc	CTUh	5.15E-07	2.83E-10	4.28E-10	0	2.73E-08	0	1.12E-10	1.14E-09	7.61E-11	6.3E-07
SQP	SQP	2E+02	1.27E-03	1.04E-01	0	2E+01	0	5.03E-04	1.04E-01	1.7E-03	-8.49E+00

PM = Potential incidence of disease due to PM emissions; IR = Potential Human exposure efficiency relative to U235; ETP-fw = Potential comparative Toxic Unit for ecosystems; HTP-c = Potential comparative Toxic Unit for humans (cancerogenic); HTP-nc = Potential comparative Toxic Unit for humans (not cancerogenic); SQP = Potential soil quality index

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

This EPD was created using a software tool.

References

EN 1154

EN 1154-2003;

Building hardware – Controlled door closing devices Requirements and test methods

EN 1155

EN 1155-2003-04;

Building hardware – Electrically -powered hold -open devices for swing doors Requirements and test methods (includes amendment A1:2002); German version /EN 1155:1997+A1:2002

EN 1158

EN 1158-2003-04;

Building hardware – Door coordinator devices – Requirements and test methods (includes amendment A1:2002); German version /EN 1158:1997 + A1:2002

DIN SPEC 1104

DIN SPEC 1104:2009-12;

Building hardware - Door fittings for use by children, elderly and disabled people in domestic and public buildings - A guide for specifiers: German version CEN/TR 15894:2009

DIN EN 14637

DIN EN 14637:2008-01;

Building hardware - Electrically controlled hold-open systems for fire/smoke door assemblies - Requirements, test methods, application and maintenance; German version EN 14637:2007

EN 15804

EN 15804+A2:2019+AC:2021;

Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

ECHA

European Chemical Agency

ISO 14025

DIN EN ISO 14025:201110; Environmental labels and declarations — Type III environmental declarations — Principles and procedures

REACH

Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)

RoHS

2011/65/EU, Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment

Further References

IBU 2021

General Instructions for the EPD programme of Institut Bauen und Umwelt e.V. Version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021. www.ibu-epd.com

GaBi

Sphera Solutions GmbH
Gabi Software System and Database for Life Cycle Engineering
19922020
Variation 40 0 0 74

Version 10.0.0.71 University of Stuttgart Leinfelden-Echterdingen

GaBi ts documentation

GaBi life cycle inventory data documentation (https://www.gabisoftware.com/support/gabi/gabidatabase-2020-lcidocumentation/).

LCA-tool dormakaba

Tool No.: IBU-DOR-202104-LT1-EN. Developed by Sphera Solutions GmbH

PCR Part A

PCR – Part A: Calculation Rules for the Life Cycle Assessment and Requirements on the Project Re-port according to EN 15804+A2:2019,

Version 1.0, 2020, Institut Bauen und Umwelt e.V., www.ibu-

epd.com.

PCR Part B

PCR – Part B: Requirements on the EPD for Building Hardware product, version 08/2021, Institut Bauen und Umwelt e.V., www.ibu-epd.com.

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com

Owner of the Declaration

dormakaba International Holding GmbH DORMA Platz 1 58256 Ennepetal Germany +49 2333 793-0 info.de@dormakaba.com www.dormakaba.com